Mechanisms responsible for enhanced inflammatory response to ischemia-reperfusion in diabetes.

نویسندگان

  • Azucena Salas
  • Julián Panés
  • J Ignasi Elizalde
  • Maria Casadevall
  • Donald C Anderson
  • D Neil Granger
  • Josep M Piqué
چکیده

The objective of the present study was to assess the role of lipid mediators and adhesion molecule expression in exacerbation of ischemia-reperfusion-induced inflammatory response in diabetes. Leukocyte-endothelial cell interactions were studied in mesenteric venules by intravital microscopy. Endothelial expression of intercellular adhesion molecule (ICAM)-1 was measured by the double-radiolabeled monoclonal antibody technique, and β2-integrin expression was measured by flow cytometry. Ischemia-reperfusion elicited significantly larger increases in leukocyte adhesion and emigration in diabetic rats that were prevented by a platelet-activating factor (PAF)-receptor antagonist or a leukotriene synthesis inhibitor. Leukotriene B4(LTB4) superfusion induced similar leukocyte recruitment in diabetic and control rats, whereas PAF elicited larger increases in diabetic rats. CD11a, but not CD11b, expression was higher in leukocytes from diabetic animals. Endothelial ICAM-1 in mesentery and in intestine did not differ between diabetic and control rats. These results indicate that diabetes is associated with an enhanced response to ischemia-reperfusion that depends on both PAF and leukotrienes. An increased sensitivity to PAF, along with an increased CD11a expression, may account for the exaggerated inflammatory response to ischemia-reperfusion in diabetes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methanolic leaf extract of Punica granatum attenuates ischemia-reperfusion brain injury in Wistar rats: Potential antioxidant and anti-inflammatory mechanisms

Objective(s): This study was conducted to evaluate the cerebroprotective effect of methanolic leaf extract of Punica granatum (MePG) in Wistar rats.Materials and Methods: The MePG was initially assessed for in vitro antioxidant activity, and later evaluated on LPS-induced RAW 264.7 cell line assay. Finally, the MePG was evaluated against ischemia-reperfusion (I/R) induced brain injury in Wistar...

متن کامل

Carthamus tinctorius L. ameliorates brain injury followed by cerebral ischemia-reperfusion in rats by antioxidative and anti-inflammatory mechanisms

Objective(s): Carthamus tinctorius L. (CT) or saffloweris widely used in traditional Chinese medicine. This study investigated the effects of CT extract (CTE) on ischemia–reperfusion (I/R) brain injury and elucidated the underlying mechanism. Materials and Methods: The I/R model was conducted by occlusion of both common carotid arteries and right middle cerebral artery for 90 min followed by 24...

متن کامل

Effect of renal ischemia-reperfusion on lung injury and inflammatory responses in male rat

Objective(s):Acute kidney injury (AKI), a syndrome characterized by decreased glomerular filtration, occurs in every 1 of 5 hospitalized patients.  Renal ischemia-reperfusion, one of the main causes of AKI, is of particular importance in the setting of kidney transplantation. Materials and Methods: Sixty male rats were divided into four groups including control, nephrectomy, sham surgery and re...

متن کامل

The protective effects of silymarin on ischemia-reperfusion injuries: A mechanistic review

Ischemia-reperfusion injuries (IRI) occur in different clinical conditions such as stroke, trauma, organ transplantation, and so on. Ischemia damages mainly arise from oxygen depletion in tissues. The lack of oxygen as the last acceptor of electron in the respiratory chain causes a decrease in ATP production and eventually leads to disruption of membrane transport, acidosis, cellular edema and ...

متن کامل

Obestatin inhibits apoptosis and astrogliosis of hippocampal neurons following global cerebral ischemia reperfusion via antioxidant and anti-inflammatory mechanisms

Objective(s): Obestatin is a newly discovered peptide with antioxidant activities in different animal models. Recent studies have shown that Obestatin inhibits apoptosis following cardiac ischemia/reperfusion injury. Brain ischemia/reperfusion induces irreversible damage especially in the hippocampus area. This study aimed at examining the protective impact of Obestati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 275 5  شماره 

صفحات  -

تاریخ انتشار 1998